

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 7637–7639

Tetrahedron Letters

Synthesis of (3R,4S,5S,9S)-3,5,9-trihydroxy-4 methylundecanoic acid δ -lactone

Tushar K. Chakraborty* and Rajib K. Goswami

Indian Institute of Chemical Technology, Hyderabad 500 007, India Received 13 July 2004; revised 9 August 2004; accepted 17 August 2004

Abstract—Radical-mediated opening of a chiral trisubstituted epoxy alcohol using cp_2TiCl furnished the '2-methyl-1,3-diol' moiety with the desired stereochemistry, which led to a total synthesis of $(3R,4S,5S,9S)$ -3,5,9-trihydroxy-4-methylundecanoic acid δ -lactone 1.

2004 Elsevier Ltd. All rights reserved.

Biosynthetic engineering is emerging as a powerful tool to assemble rapidly analogues of natural products in the search for novel molecular structures, $¹$ $¹$ $¹$ which are</sup> increasingly in demand because of the alarming decline over the past decade in the number of new chemical enti-ties introduced each year as drugs.^{[2](#page-2-0)} During the studies of the biosynthesis of spinosyns, a family of agricultur-ally important molecules,^{[3](#page-2-0)} a truncated version of the spinosyn polyketide synthase was expressed in the heterologous host Saccharopolyspora erythraea JC2.[4](#page-2-0) This resulted in the formation of a novel pentaketide lactone that was identified as (3R,4S,5S,9S)-3,5,9-trihydroxy-4-methylundecanoic acid δ-lactone 1. The discovery of this molecule helped in understanding the crucial steps of spinosyn biosynthesis^{[4](#page-2-0)} and supported the widely accepted hypothesis of step-by-step functionalization of the growing polyketide chain in the biosyn-thesis of macrolides.^{[5](#page-2-0)} A general strategy for the synthesis of this type of lactone would help to prepare material for use as standards during mechanistic studies of polyketide synthases and related biological studies.[6](#page-2-0) In this paper, we describe the total synthesis of lactone 1 following a convergent strategy. Retrosynthetically, compound 1 could be prepared from a suitably protected tetrol 2 having a '2-methyl-1,3-diol' moiety, ubiquitously present in polyketide natural products. The key

feature in our synthesis is the application of a method developed by us^7 us^7 for the synthesis of chiral 2-methyl-1,3-diols by radical-mediated anti-Markovnikov opening of trisubstituted epoxy alcohol 3 at the more substituted carbon using $cp₂TiCl$ to construct the three stereocentres of 1. The trisubstituted syn epoxy alcohol 3, in turn, could be synthesized by $mCPBA$ epoxidation of the unreacted R-allylic alcohol obtained during a Sharpless kinetic resolution^{[8](#page-2-0)} of compound 4.

The synthesis is outlined in [Scheme 1](#page-1-0). Starting with (S)- 1,3-pentanediol 5, [9](#page-2-0) the C3-O-Bn protected compound 6 was prepared in three steps in 88% overall yield—protection of the primary OH as the TBDPS–ether, benzylation of the secondary hydroxyl group and finally desilylation using tetra-n-butylammonium fluoride.

Keywords: (3R,4S,5S,9S)-3,5,9-Trihydroxy-4-methylundecanoic acid; d-Lactone; Sharpless kinetic resolution; Epoxide opening; 2-Methyl-1,3-diol.

^{*} Corresponding author. Tel.: +91 402 7193 154; fax: +91 402 7193 108; e-mail: chakraborty@iict.res.in

^{0040-4039/\$ -} see front matter © 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.08.099

Scheme 1. Stereoselective synthesis of δ -lactone 1. Reagents and conditions: (a) TBDPSCl, Et₃N, DMAP (cat.), CH₂Cl₂, 0 °C to rt, 2h, 98%; (b) BnBr, NaHMDS, THF–DMF (2:1), 0°C, 1.5h, 92%; (c) TBAF, THF, 0°C to rt, 4h, 98%; (d) (COCl)2, DMSO, Et3N, CH2Cl2, –78 to 0°C, 1h; (e) $Ph_3P=CHCO_2$ Et, CH2Cl2, $0^{\circ}C$ to rt, 3h, 96% from 6; (f) LiCl, NaBH₄, EtOH–THF (1:1), rt, 3d, 62%; (g) same as in step d; (h) compound 9, *n*-BuLi, THF, -78 °C , 0.5h, then aldehyde from step g, -78 to 0°C, 1h, 95% from 8; (i) NaBH₄, MeOH, 0°C to rt, 2h, 62%; (j) Ti(O^tPr)₄, (+)-DIPT, TBHP, 4Å MS (20% w/w), CH₂Cl₂, -23°C, 40min, 45% of 12; (k) mCPBA, CH₂Cl₂, 0°C to rt, 45min, 53%; (l) cp₂TiCl₂, Zn dust, ZnCl₂ (freshly fused), THF, -20°C to rt, 6h, 60%; (m) Me₂C(OMe)₂, CSA (cat.), CH₂Cl₂, 0°C to rt, 45min, 94%; (n) same as in step c, 93%; (o) SO₃-py, Et₃N, DMSO, 0 °C to rt, 1h; (p) NaClO₂, NaH₂PO₄, 'BuOH-2-methyl-2-butene (2:1), rt, 1.5h; (q) CH₂N₂, ether, 0 °C, 15min, 84% from 16; (r) AcOH-H₂O (4:1), 0-C to rt, 12 h, 76%; (s) H2, Pd–C (10%), EtOAc, 2 h, 78%.

Swern oxidation^{[10](#page-2-0)} of the primary hydroxyl group of 6 furnished an aldehyde, which was reacted with the stabilized ylide Ph₃P=CHCO₂Et to give α , β -unsaturated ester 7 (96% from 6). Ester 7 was reduced using LiBH₄, prepared in situ from $NaBH₄$ and LiCl, to the saturated alcohol 8 in 62% yield. Oxidation of 8 to an aldehyde and subsequent the Horner–Wadsworth–Emmons olefination of the resulting aldehyde with the Li-anion of ketophosphonate 9^{11} 9^{11} 9^{11} furnished the trisubstituted Eenone (95% from 8) with complete selectivity and no Z-olefin was detected. Next the intermediate enone was reduced with N aBH₄ to give the allylic alcohol 10 in 62% yield.

Sharpless kinetic resolution^{[8](#page-2-0)} of 10 furnished the chiral unreacted allylic alcohol 12 in 45% yield (92% ee, by the Mosher's ester method¹²). Diastereoselective epoxidation of 12 using *m*-chloroperbenzoic acid $(mCPBA)$ gave the syn product 13 as the major product in 53% yield and the minor *anti*-isomer could be separated eas-ily by column chromatography.^{[13](#page-2-0)} The stereochemistry of 13 was confirmed at a later stage, after opening of the epoxide ring and subsequent protection of the resulting diol, in the acetonide-protected stage. With the trisubstituted epoxy alcohol in hand, the stage was now set to carry out the crucial Ti(III)-mediated epoxide opening step. Treatment of 13 with cp₂TiCl, generated in situ from cp_2TiCl_2 according to the procedure described earlier,^{[7](#page-2-0)} provided the expected all-syn 2 -methyl-1,3-diol'-containing intermediate 14 in 60% yield as the only isolable product.

Protection of the diol in 14 as an acetonide gave compound 15 in 94% yield. The ¹³C NMR spectrum of 15 showed signals due to the acetonide methyls at 30.08 and 19.21 ppm and the ketal carbon at 98.8 ppm supporting the assigned '1,3-syn' stereochemistry of the diol moiety in 15.^{[14](#page-2-0)} Furthermore, the ³J couplings of 5.0 Hz of $CH(CH₃)$ with adjacent protons on both sides proved the $1,2$ - and $2,3$ -syn' relationships. Desilylation of 15 furnished the alcohol 16 in 93% yield. Oxidation of the primary hydroxyl of 16 in two steps gave the acid, which was esterified with $CH₂N₂$ to provide the methyl ester 17 in 84% yield from 16. Treatment of 17 with acid led to deprotection of the acetonide group with concomitant cyclization to furnish the six-membered lactone 18 in 76% yield. Finally, hydrogenation of 18, using Pd–C as catalyst, removed the benzyl-protection resulting in the successful completion of the first total synthesis of the target lactone 1 in 78% yield.^{[15](#page-2-0)} Our synthetic lactone 1 was identical in all respects with that isolated by Mar-tin et al.^{[4](#page-2-0)} While the ${}^{1}H$ NMR is consistent with the reported values, the matching ¹³C data¹⁵ provides strong evidence that the two materials are the same.

Acknowledgements

We thank CSIR, New Delhi for a research fellowship $(R.K.G.).$

References and notes

- 1. (a) Burkart, M. D. Org. Biomol. Chem. 2003, 1, 1–4; (b) Khosla, C. J. Org. Chem. 2000, 65, 8127–8133; (c) Staunton, J.; Wilkinson, B. Curr. Opin. Chem. Biol. 2001, 5, 139–164; (d) Gaisser, S.; Martin, C. J.; Wilkinson, B.; Sheridan, R. M.; Lill, R. E.; Weston, A. E.; Ready, S. J.; Waldron, C.; Grouse, G. D.; Leadlay, P. F.; Staunton, J. Chem. Commun. 2002, 618–619.
- 2. (a) Rouhi, A. M. Chem. Eng. News 2003, 81, 77; (b) Newman, D. J.; Cragg, G. M.; Snader, K. M. J. Nat. Prod. 2003, 66, 1022.
- 3. Crouse, G. D.; Sparks, T. C. Rev. Toxicol. 1998, 2, 133.
- 4. Martin, C. J.; Timoney, M. C.; Sheridan, R. M.; Kendrew, S. G.; Wilkinson, B.; Staunton, J.; Leadlay, P. F. Org. Biomol. Chem. 2003, 1, 4144.
- 5. O'Hagen, D. In The Polyketides Metabolites; O'Hagen, D., Ed.; Ellis Horwood: New York, 1991; pp 116–137.
- 6. (a) Khosla, C.; Gokhale, R. S.; Jacobsen, J. R.; Cane, D. E. Ann. Rev. BioChem. 1999, 68, 219, and references cited therein; (b) Kinoshita, K.; Khosla, C.; Cane, D. E. Helv. Chim. Acta 2003, 86, 3889.
- 7. (a) Chakraborty, T. K.; Das, S. Tetrahedron Lett. 2002, 43, 2313; (b) Chakraborty, T. K.; Dutta, S. J. Chem. Soc., Perkin Trans. 1 1997, 1257.
- 8. (a) Katsuki, T.; Martin, V. S. Org. React. 1996, 48, 1; (b) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.
- 9. Compound 5 was prepared from the corresponding chiral (2S,3S)-epoxy alcohol (Honda, M.; Katsuki, T.; Yamaguchi, M. Tetrahedron Lett. 1984, 25, 3857) by hydride opening with Red-Al and subjecting the mixture of products to an oxidative cleavage reaction using NaIO4 to remove the minor 1,2-diol product.
- 10. Harried, S. S.; Lee, P. C.; Yang, G.; Lee, I. H. T.; Myles, C. D. J. Org. Chem. 2003, 68, 6646.
- 11. The phosphonate 9 was synthesized by reacting the Lianion of diethyl ethylphosphonate with 3-(tert-butyldiphenylsilyloxy)propionic acid methyl ester. The latter was prepared by two-step oxidation of mono-TBDPSprotected 1,3-propanediol to the corresponding acid, which was esterified using $CH₂N₂$.

- 12. (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512; (b) Mosher, H. S.; Dull, D. L.; Dale, J. A. J. Org. Chem. 1969, 34, 2543.
- 13. Rossiter, B. E.; Verhoeven, T. R.; Sharpless, K. B. Tetrahedron Lett. 1979, 20, 4733.
- 14. (a) Rychnovsky, S. D.; Rogers, B. N.; Richardson, T. I. Acc. Chem. Res. 1998, 31, 9; (b) Evans, D. A.; Rieger, D. L.; Gage, J. R. Tetrahedron Lett. 1990, 31, 7099.
- 15. Selected physical data of 1. $R_f = 0.3$ (silica, 8% MeOH in CHCl₃); $[\alpha]_D^{27} - 35$ (c 2.5, CHCl₃); ¹³C NMR (75MHz, CDCl3): d 170.3, 78.0, 73.0, 68.7, 37.4, 36.4, 35.8, 31.7, 30.2, 21.6, 10.2, 9.8; MS (LSIMS) m/z (%) 231 (20) $[M+H]^+$, 213 (5) $[M+H-H_2O]^+$, 195 (5) $[M+H-2H_2O]^+$.